AN
Netherlands TNO Institute for Perception
organization for z
applied scientific P.O Box 23
research Z?:piigsso TD
3769 DE Soesterberg, The Nethernanas
TNQ-report Fax +31 346353977
Phone +31 3463562 11
IZF 1991 B-2 AN EXPLORATORY STUDY OF THE / y
PJ.M.D. Essens INTERPRETATION OF LOGICAL OPER-
C.A. McCann* ATORS IN DATABASE QUERYING
M.A. Hartevelt 09

Nothing from thts 1ssue may be reproduced

and.or pubhished by print. phctoprint,

microfilm or any other means without A 23 6 478
previous written consent from TNO.

Submutting the report for inspection to I

parties directly interested is permitted

In case th rt was drafted
‘:s::&il;):t‘:gﬂghv::;(;aolj»g:ggs; E L ECT E
of contracting parties are subject to either UN 0 7 19911

the ‘Standard Conditions for Research
Instructions given to TNO' or the reievant
agreement concluded between the contracting
parties on account of the research object
involved

TNO

*On scientific exchange from Defence and Civil Institute of Environmental
Medicine, P.O. Box 2000, North York, Ontario, Canada M3M 3B9

TIDCK RAPPORTENCENTRALE
Frederikkazerne, Geb. 140
van den Burchlaan 31

Telefoon: 070-3166394/6395
Telefax : (31) 070-3166202
Postbus 90701 =
2509 LS Den Haag —Q_g!

Number of pages: 29

f 01284
?’ \\l\\\l\I\l\\\l\\l\\l\\\ll\\l\‘ {1

UTION 8TA A

Approved for public yelease;
Distribution Unlimited

3

CONTENTS

Page
SUMMARY 5
SAMENVATTING 6
1 INTRODUCTION 7
2 METHOD 11
2.1 Subjects 12
2.2 Stimuli 12
2.3 Procedure 14
3 RESULTS 15
3.1 Latency data 15
3.2 Error data 16
3.3 Verbal protocols 18
3.3.1 Processing errors 18
3.3.2 User strategies 21
4 DISCUSSION 22
REFERENCES 27
APPENDIX Queries in the verbal protocol blocks 29

. ,‘“\

. Accession Por
[NTIS GRA&I
DTIC TAR O
Unannounced 0
Justification o]

By . — o~

l_)grspri»bution/‘

| Avallabllity Codes
'——_(»”[Av‘ail and/or
st ‘ Special

P

5
Report No.: IZF 1991 B-2
Title: An exploratory study of the interpretation of logical
operators in database querying
Authors: Drs. PJ.M.D. Essens, C.A. McCann and drs. M.A.
Hartevelt
Insiitute: TNO Institute for Perception

TNO Defence Research
Group: Cognitive Psychology

Date: March 1991
DO Assignment No.: B91-34
No. in Program of Work: 733.1

SUMMARY

The use of logical operators in query languages is considered to be a major
source of user problems in database querying. The present study investigated
whether people untrained in logic could successfully interpret logical operators;
and, how errors and latencies are related to the structure of the query. In an
experiment, the logical complexity of an SQL-style query formulation was varied
in using AND, OR, and NOT operators in either single or combined form. The
latency and error data converged to show that subjects had increasing difficulty
with queries constructed with a combination of different operators. The inclusion
of brackets had a strong positive effect on task performance. Verbal protocols
were used to identify sources of errors in query processing. A model of query
processing was formulated and predictions latencies and errors on the basis of
processing components were tested.

Rap.nr. IZF 1991 B-2 Instituut voor Zintuigfysiologie TNO,
Soesterberg

Een verkennende studie van de interpretatie van logische operatoren bij het
bevragen van een database

PJ.M.D. Essens, C.A. McCann en M.A. Hartevelt

SAMENVATTING

Het gebruik van logische operatoren in vraagtalen wordt beschouwd als een
belangrijke bron van gebruikersproblemen bij het bevragen van een database. In
de huidige studie is onderzocht of mensen die ongetraind waren in logica, met
succes logische operatoren konden interpreteren en hoe fouten en responstijden
gerelateerd zijn aan de structuur van de formele vraag, In een experiment werd
de logische complexiteit gevarieerd van een formele vraag (van het SQL-type)
door AND, OR en NOT operatoren te gebruiken enkelvoudig of gecombineerd.
De resultaten van de responstijden en fouten gaven beide hetzelfde beeld: de
combinatie van verschillende operatoren leverde het grootste probleem op. Het
toevoegen van haakjes in de vraagformulering had een sterk positief effect op de
taakuitvoering. Verbale protocollen werden gebruikt om bronnen van fouten te
identificeren in het verwerken van de vraag. Een model van de verwerking van
formele vragen werd geformuleerd en voorspellingen van responstijden en fouten
op basis van verwerkingscomponenten werden getest.

|
é
L

1 INTRODUCTION

Database management systems (DBMSs) are now widely used for structuring
and storing textual information in applications ranging from small business
administration systems to large library cataloguing systems. The user of a DBMS
retrieves information from the database by specifying the subset desired along
dimensions that are recognized by the database. This involves two major steps.
The first is the formulation of a mental representation of the information subset
that is desired, based on the users conception of the way in which the database
is structured. In the second step, that representation is transformed into an
explicit query using a database query language or environment. The subset
defined by the query is then extracted by the DBMS and presented to the user
who checks to see if it is the desired set. If it is not, the loop of query creation,
submission, extraction and checking is repeated until the user is satisfied.

A variety of interfaces and querying languages have been developed to provide
access to data sets (Vassiliou & Jarke, 1984). Many are based on the structure of
the language SQL (Chamberlin et al.,, 1976). Yet studies of such interfaces have
demonstrated that people, especially non-programmers, have difficulty using
them (Jarke & Vassiliou, 1985). To date, the fundamental research investigating
database querying has focussed mainly on the following areas and issues: the
user’s mental model of the information system; influence of the structure of the
information set; the syntax of the query language; and the use of Boolean
operators for subset specification, the topic of this study. The remainder cof this
introduction gives a brief description of the first three issues mentioned, since
work on these topics is also relevant to the current study; this is followed by a
consideration of research done to date on the use of logical operators in

querying.

Users are normally taught procedures for using an information retrieval system,
for example, by formal training or from a manual. However, after this training,
they may still have a poor mental model of the underlying capabilities, structure,
and internal relationships in the information system. This lack of appropriate
mental model prevents users from making inferences and predictions about the
system’s behaviour and inhibits further learning. In a study addressing this issue,
Borgman (1986) demonstrated experimentally that subjects trained on simple
retrieval tasks via a "conceptual” model of an on-linc library catalogue were
better able to perform complex tasks that required extrapolation from the basic
concepts than those subjects who were trained only on retrieval procedures.

The data contained within an information system are conceptually organized by
the designers according to a "data model”. There are three generic frameworks in
which data is typically structured: the hierarchical, network and relational
frameworks (corresponding to the different types of database management
systems). The particular subdivision, grouping and linkage of a specific set of
data within the selected generic framework forms the data model. Problems can

arise if the structure of the data model is unknown to the user or is inappropri-
ate for the task. Early work by Broadbent and Broadbent (1978) investigated the
structuring of classes of objects and the allocation of descriptor terms to the
classes. It showed that a person’s retrieval of information is much better when
the queries are based on the terms that he or she had assigned. Later studies
(Lochovsky & Tsichritzis, 1977; Brosey & Shneiderman, 1978) compared the use
of different generic data models on query writing.

Retrieval problems are sometimes due to factors at a lower level of human-
computer communication, for example, the particular syntax or lexicon used in
the query language itself. These issues have been identified in language usability
studies carried out during the design of new query environments. Such studies
have identified minor, but repeatedly-made errors like omitted punctuation,
misspelled terms and the incorrect use of synonyms (Reisner, 1977; Welty, 1985;
Thomas, 1975).

In most database interfaces, the user specifies the subset of information that is
desired by using Boolean connectives to form a logical combination of attributes
that describe the set. Problems can arise when the users concept of subset
formation does not match the Boolean-based one demanded by the computer.
The current work is focussed on this particular issue in information retrieval.

There is much incidental and anecdotal comment on the difficulty people have
with logical (Boolean) operators like AND and OR in database querying (e.g.,
(Thompson & Croft, 1589; Cooper, 1988). Marchionini (1989) notes that the
Boolean operators provided for filtering the retrievals from an electronic
database like an encyclopaedia are important tools for effective use of these
information systems. However, in a study of the use of such databases by
students, he found that they did not seem to take full advantage of search tools
involving Boolean connectives. The AND operator was used as a connective in
only one third of the electronic searches; the OR and NOT operators were never
used. In the domain of library retrieval, Borgman (1986) found that 25% of
subjects learning an SQL-like query language could not pass benchmark tests for
system proficiency, although these tests were representative of the searches that
were supported. The problem seemed to lie in the use of Boolean logic: more
than one quarter of the subjects could not complete simple search tasks involving
the use of one index and at most one Boolean operator.

One aspect of the difficulty stems from an incompatibility between natural
English usage of the connectives "and” and "or" and their use in database
retrieval. Ogden and Kaplan (1986) investigated this problem in detail, showing
that the English word “or" is most frequently used to indicate union, but that
"and" is often used ambiguously to indicate both union and intersection. Thus the
statement "Show the students in grades 10 and 11" implies the union (logical
conjunction) operation (the set of students in grade 10 plus the set of students in
grade 11), despite the use of the word "and". Since people often attempt to

P

“translate” the English-language statement of a problem into the query language
in a phrase-by-phrase way, the different meanings of the connectives are not
taken into account (Reisner, Boyce & Chamberlin, 1975). Ogden and Kaplan
propose the incorporation of simple syntactic elements in the retrieval language
to permit users to clarify ambiguous logical combinations.

The other difficulty in subset extraction has to do with the actual understanding
and use of the logical operators in subset specification. This notion has not been
as thoroughly investigated. Wason and Johnson-Laird (1972) found that subjects
could more easily describe conjunctive concepts (involving AND) than disjunc-
tive ones (involving OR) and that concepts which involved both conjunctive and
disjunctive relations were the hardest to describe. Furthermore, subjects seemed
to prefer positive descriptions of concepts rather than negative ones, even though
the negative description was more efficient. The results suggested that perhaps
the logically naive person does not naturally think in a logically pure manner.

The results of these studies of logical reasoning seem to be borne out in a more
recent study by Greene et al (Greene, Devlin, Cannata & Gomez, 1990) in
which performance on subset specification using an SQL type query language
with explicit Boolean operators is compared with a tabular interface. In one
condition, subjects were required to generate simple queries involving AND, OR,
NEG, and AND+OR. In another condition they had to choose the SQL query
corresponding to a certain English statement. The average number of correct
queries generated using SQL was only around 55%, except for the AND queries
which were less error prone (73% correct). The time required to generate the
query increased in the order AND, OR, NEGATION, AND+OR. Fewer errors
were made in the choose condition, but the pattern of time required for selec-
tion was the same.

A study by Katzeff (1986) achieved higher success rates for generation of the
same kinds of queries using a language essentially equivalent to the Boolean
expression part of SQL. Subjects were first trained to interpret query specifica-
tions of the following logical forms:

P, NOT P, P AND Q, P OR Q, NOT (P AND Q), NOT (P OR Q)
Query interpretation required subjects to determine whether a given query would
retrieve the information presented on an accompanying Venn diagram. They
were then tested on query formulation for these same forms of queries and
additional new forms:

P AND NOT Q, P OR NOT Q, NOT P AND Q, NOT P OR Q

With feedback and as much time as needed, subjects were able to generate
queries in the first set with a success rate of 96%. Furthermore in almost half of
the cases in the second set (45%) they were successful in identifying and using a
single statement to express the logical restriction, although they had not been
trained on them.

10

In a third investigation, Michard (1982) compared a Venn diagram aid for subset
specification with the classical explicit Boolean operators as in SQL. The query
problems involved three or four clauses, and various combinations of AND, OR
and MINUS. The SQL specification gave rise to four times as many errors in set
specification (38%) as the Venn specification method, including errors such as
missing brackets and criterion, and incorrect operators.

Although none of the latter three studies focussed specifically on the issue of
logical operators in querying, they provide some evidence to confirm the less
rigourously derived observations of Marchionini and Borgman, that, indeed,
users are often not successful in correctly employing logical operators in SQL
querying. However, the results are somewhat contradictory, with the Green et al
experiment giving rather higher error rates for SQL query formulation than that
by Katzeff. There are several important methodological factors that prevent
direct comparison of the results, and, in addition, preclude the drawing of
conclusions about precisely where in the querying process the problem with the
logical operators actually lies.

All experiments involved the generation of SQL-style queries from test questions
posed in natural language. However the exact task of the subject varied: in the
Michard study, subjects were required to create the whole query; in the others,
only the part involving the logic of subset specification. Even with liberal error
scoring methods, as used by Green et al, it is possible that many of the errors in
query formulation were due to factors additional to the understanding of logical
operators per se, for example, the subjects’ memory for details of syntax. It
should be noted that the Green et al experiment circumvented this complication
by having a separate task condition that required only the recognition of the
correct query from a set.

All studies investigated the use of the operators AND and OR, although there
were differences in the logical combinations used and in the overall "complexity"
(number of operators and structure) of the queries demanded. Two of the
experiments tested the NOT operator, whereas the material used by Michard
included the MINUS operation instead. The precise logical form of queries used
in the experiment by Green et al was not described. The particular combination
of logical operators has a large influence on the processing of the query. This
factor was deliberately manipulated in the current study.

A further complication in query formulation concerns the influence of the
natural language stimulus material on query formulation, especially given the
potential confusion between natural language usage of logical connectives and
their use in databases as elucidated by Ogden and Kaplan. In addition, there is
the more general problem of determining whether the subject actually knows
which information subset is requested by the stimulus question. The Green et al
study handled this issue nicely by including a confirmatory test phase to check on
subjects’ understanding of the test question.

11

An additional difference in task across studies concerned feedback on response.
Subjects were given feedback about the correctness of the query in the Katzeff
study, and encouraged to try again on queries incorrectly specified. This may
explain the better performance in this study compared to that by Green et al or
by Michard.

Training for subjects was by the "standard” SQL manual with examples and
exercises in the Green et al experiment; by the use of written instructions and
Venn diagram test examples in the Katzeff study; and by demonstration of
examples in the Michard study. The form and extent of the training may well
have a strong influence on subjects’ comprehension of the meaning and use of
logical operators. Special attention was paid to training and feedback in the
current experiment.

In each previous study, subjects had no experience in computer use, although it
is possible that they may have had training in logic, which would have influenced
ability to do logical manipulations. The level of general education was higher in
the Katzeff and Michard studies (university/college versus highschool).

In every case, the experimental part of the study was relatively short, involving
the generation of only between 8 and 24 queries. Thus it is not possible to
determine how performance using logical operators might change due to more
extensive use of the language. Our study tested performance over a long series of
trials.

In summary, the studies to date have not specifically addressed the cognitive

interpretation of SQL logical operators under well-controlled conditions, in

particular the relationship between errors and the specific operators and logical

structure of a query. The current study, therefore, is aimed at providing more

insight into what, exactly, is the source of difficulty in the use of Boolean

operators in subset specification in querying. More precisely, we wanted to see

a Whether people untrained in logic could successfully interpret the logical
operators (i.e., intersection, union, negation) as used to specify subsets in
standard database querying;

b What kind of errors they made and how the errors related to the structure
and complexity of the subset specification.

2 METHOD

There were several considerations that influenced the design of the experiment.
First, as this was an exploratory investigation, we wished to keep the subject’s
task as simple as possible. We wanted to avoid, for example, the complications
introduced by use of "and" and "or" in natural language. Furthermore, we wanted
to concentrate on the subject’s conception of Boolean operators per se and to

12

avoid the influence of complex processes like language transformation assumed
in query writing (Reisner, 1977). We therefore chose query interpretation rather
than query writing as the focus of attention, the rationale being that the latter
involves the former. In addition, the dataset attributes were limited to four in
number to control for the learning of the data model. Second, since its use is
now so widespread, we decided to employ an SQL-style of presentation as the
subset specification "language". Third, we choose "naive" subjects - those without
training in programming or logic. Furthermore, we limited the amount of
training provided to subjects to the minimum necessary to get them going on the
task, in the expectation that this strategy would better reveal the errors that they
made.

The general task of the subject was to decide whether the SQL-style query
presented on the screen would or would not result in the selection of the data
base item that was described along with the query. Performance was measured in
terms of latencies to evaluate each query and the errors made. Verbal protocol
sessions gave qualitative data concerning the query evaluation process.

2.1 Subjects

Twelve students between the ages of 18 and 28 years participated in the experi-
ment. Four of them were university students; the other eight were finishing or
had just finished high school. They were selected on the basis of absence of
experience with computer programming or any other substantial knowledge of
logic. The subjects were paid for their participation.

2.2 Stimuli

The stimulus set was constructed in two steps: first, a set of generic queries
differing in the combination of logical operators was created; second, (arbitrary)
information about different musical recordings ("LP%s") was connected to these
queries. The LP-instance consisted of five characteristics or attributes: title of the
LP, name of the artist, genre of music, year of recording and rating of the LP.
The query was a SQL-type subset specification with two or three conditions
("clauses”) referring to LP-instance. The clauses, which in some cases were
negated by the logical operator NOT, were connected by logical operators AND
or OR. For each trial, a query and an instance of a LP were presented. The
subjects had to decide whether the LP-instance did or did not match the query.
A sample stimulus is shown in Fig. 1. In the example the LP-instance does not
match the query: although the artist is not Will Bazar, the year is not greater
than 1970; furthermore, the genre does not match. The title of the LP was never
used in the query. A notation employed henceforth in the paper to describe
queries uses A, B, and C to represent the clauses in the query; thus the sample
query can be written NOT A AND B OR C.

13

not artist = "Will Bazar” and year > 1970 or genre = op’

TITLE ARTIST GENRE YEAR RATING

YES NO Can you feel Nenny Red jazz 1969 3

Fig. 1 A sample stimulus showing the query (top line), the LP-
instance (bottom line), response buttons, and a button to call the next
stimulus.

The combinations of logical operators used in this experiment are shown in
Table I. There were four main query categories consisting of two subcategories
with combinations of logical operators. Each main query category was crossed
with three levels of NOT (none, one or two). The position of the NOT(s) was
varied across the A, B, or C clauses. The "mixed" case appeared with and
without parentheses. Parentheses were used only in combination with the second
logical operator, i.e., NOT A OR (NOT B AND C). No default operator
precedence rules were used, the rationale being that this would add an addi-
tional degree of complexity. Thus AND and OR were treated as equal in
priority. Brackets were used to indicate grouping of the clauses.

Table I Schematic representation of the 24 combinations of logical
operators used in the experiment.

Query categories

Single Double Mixed Mixed()
Logical operator combinations
AND;OR AND AND;OR OR AND OR:OR AND AND (OR);OR (AND)
0-NOT
1-NOT
2-NOT

Two main sets of 34 stimuli representing the range of combinations of logical
operators and having different query content were formed. The within-clause
comparators (=,<>,<,>) were evenly distributed over these queries. Un-
intended peculiarities of the LP-instance in the query part of the stimulus were

|

14

controlled by varying the position and/or content of the LP-instance between the
two subsets of stimuli. Queries in which the logical operators differed only in the
position of the NOT were distributed over the two subsets in order to reduce the
number of stimuli. The two subsets were replicated four times for a total of eight
blocks. The content of the LP-instance part of the stimulus was varied between
blocks so that the number of "yes" and "no" responses was evenly distributed.

A third set of 40 stimuli (for the verbal protocol sessions) ~epresenting most
combinations of logical operators, and having the same constraints as the two
main sets was also formed. The full set of logical combinations in this set is
shown in the Appendix.

2.3 Procedure

The task of the subjects was to evaluate whether a certain LP described in the
LP-instance would be selected by a given query. Latency and error data were
collected in a so-called "speed session", in which subjects were instructed to
perform the task as quickly as possible. The speed session consisted of the eight
blocks of 34 (randomly ordered) stimuli. Between the blocks was a short pause.
Before and after the speed session there was a "verbal protocol session” in which
the subject was asked to think aloud during the evaluation of the queries. The
two blocks of the verbal protocol sessions were completely identical and con-
sisted of 40 (randomly ordered) stimuli each.

At the start of a session, subjects were given written instructions about the
experiment and the task. The task was explained primarily by examples. No
reference to truth tables or the explicit truth or falseness of the clauses in the
examples was made. No specific reference to precedence of operators was made.
Subjects were told that brackets meant a grouping of the clauses. A scries of
sample queries were presented, for instance:
artist = 'Will Bazar’ and year > 1970 or genre = 'pop’.

The explanation accompanying this query was "The selected LPs have to be
made by Will Bazar after 1970 or be pop LP%." A list of six LP-instances was
presented with the query and the result of every comparison of query to instance
was given for the subject to study and confirm. The effect of the AND and OR
were summarised in the following manner: "When an AND is used, then the LP
has to have both characteristics to be selected. When an OR is used, then the
LP must have one (or all) characteristics." To test whether subjects had learned
the logical operators adequately twelve test queries (six on paper and six on the
screen) were given after the instructions. The subjects were required to speak
out aloud the steps that were taken in the evaluation of these queries. The
experimenter confirmed correct evaluations and made short comments on errors
("look again”, "are you sure?"). During the experiment no feedback was given
about errors.

15

The stimuli were presented in black on a white 19-inch high-resolution computer
screen. The experiment was self-paced; the subject called the next stimulus by
clicking on the NEXT-button (see Fig. 1). Between the stimuli was a one-second
time gap. A warning signal indicated the arrival of next stimulus. Subjects
responded by clicking with the mouse on one of the two fields labeled YES and
NO. They were allowed to correct their response. All responses were recorded
automatically in the computer. In the verbal protocol sessions subjects were
asked to think aloud when processing a stimulus. The verbal protocols were
recorded on tape.

3 RESULTS

The latericy between presentation of the stimulus and the first response in the
speed session was used in further analysis. This response was also analysed for
€ITors.

3.1 Latency data

The distribution of the latency data was slightly skewed and showed a long tail
with some extreme large values. On the basis of this distribution, latency values
greater than 25 s (n=27 out of 3264) were eliminated from the latency dataset.
Furthermore, all cases of incorrect response (the errors) were removed. This
reduced the dataset from 3264 to 3070 points. The mean latency to process
queries was 8.7 with a standard deviation (sd.) of 3.5 s.

Analyses of variance were performed on the data for the different logical
operators and their combinations. The two subsets of stimuli used in the speed
session were grouped together, because no differences were found. Mean
latencies for the four query categories, single, double, mixed, mixed(), crossed
with the three levels of NOT are presented in Table II. The difference between
the single and double category is a reflection of the extra processing time of a
3-clause versus a 2-clause query. No significant difference was found in latencies
to process single and double queries containing AND operator(s) versus those
containing OR (means 8.2 s and 8.1 s, respectively). The differences between
double and mixed, and double and mixed() were not significant. The latencies of
queries with parentheses ("mixed()") showed a significant improvement compared
to those without them ("mixed"), [F(1,1443)=34.8, p<.001]. An analysis of the
position of AND-OR in the queries of the mixed categories indicated no order
effect.

The effect of number of NOTs was significant [F(2,3064)=57.6, p<.001]. A
post-hoc test showed that the effect was due to the difference in latencies
between 0-NOT and 1-NOT [F(1,3064)=58.8, p<.001]. No significant higher
order interactions were found for the query categories and the NOT.

16

Table II Average response latencies (s) for the four query and three

NOT categories.
Query categories
Single Double Mixed Mixed() mean(sd)
0-NOT 6.2 8.3 8.9 8.3 7.7 (3.2)
I-NOT 7.0 94 103 8.9 9.1 (3.7)
2-NOT 8.1 9.9 10.7 9.1 9.5 (3.9)

mean(sd) 69 3.0) 91(33) 101(39) 88(35) 87(3.5)

Visual scanning of the data showed similar performance of the subjects across
different logical combinations, although latencies differed from subject to
subject. In particular the university students processed the queries faster than the
high school students. For the two groups of students an analysis of variance
across the four query categories and NOT categories indicated a significant
effect of groups [(F(1,3062)=127.6, p<.001]. No higher order interactions of
these factors were found. In a two way ANOVA a significant effect of blocks and
a significant higher order interaction with student groups was found, respectively,
F(7,3054)=13.5, p<.001; F(7,3054)=3.6, p<.001. Latencies dropped over the 8
speed blocks from 10 to 6.6 s for the university students and from 9.9 to 8.9 s for
the high school students. The performance of both groups started off the same,
but that of the university students improved more than that of the high school
students.

3.2 Error data

The first main analyses considered the differences between query categories, split
out in separate analyses (Pearson chi square) of single vs. double, double vs.
mixed, mixed vs. mixed(). Mean error rates for the four query categories, single,
double, mixed, mixed(), and the levels of the NOT are presented in Table III
The difference between the single and double category is not significant. There
is no significant difference in error rates between AND and OR with two and
three clause queries pooled together. The difference between double and mixed
was significant (x%(1)=12.2, p<.001). The queries with parentheses ("mixed()")
showed significantly fewer errors compared to those without
("mixed"),[x%(1)=5.2, p<.025). An analysis of the order of AND-OR in the
queries of the mixed categories indicated no order effect.

T T ————— g

B

17

Table III Errors (%) for the four query and three NOT categories as
percentages of the number of observations (n).

Query categories
Single Double Mixed Mixed() Mean(n)
0-NOT 1.6 (384) 2.4 (336) 7.9 (240) 42 (192) 3.6 (1152)
1-NOT 7.3 (192 49 288; 7.3 £288; 3.8 §288; 5.7 §1056;
2-NOT 4.7 (192 4.9 (288 8.3 (288 6.6 (288 6.2 (1056

Mean(n) 3.8 (768) 3.9 (912) 7.8 (816) 4.9 (768) 5. (3264)

The NOT effect is significant [x%(1)=9.2, p<.005]. No significant higher order

interactions were found for the query categories and the NOTS.

For the two groups of students a x2 across the four query categories and NOT

categories indicated no effect of groups. No higher order interactions were

found. There was a significant effect for blocks [x%(7)=17.7 p<.025]. The error

rate dropped from 4.9% to 1.7% in the last block. However, no significant higher

order interaction with student groups was found.

The results of the latency and error data can be summarised as follows (Fig. 2):

(i) largest latencies and highest error rates are found in the "mixed" category;
smallest latencies and lowest error rates are found in the "single" category

(if) latencies increase significantly in the "double" category compared to the
"single”, but error rates do not increase

(iii) error rates increase significantly in the "mixed" category” compared to the
"double”, but the higher latencies are not significant

(iv) latencies and error rates decrease significantly in the "mixed()" category
compared to the "mixed".

12 20
- [Jtime (s) 1

10 274 errors (%) N

s {15
8r T =
3}] R
2 6f -10%
= 4:. 7/ _ 5
| | L
1R 18710 1R

Q

single double mixed mixed|()

categories

Fig. 2 Latency (s) and error (%) data for the four query categories.

18

3.3 Verbal Protocols

An analysis of the verbal protocol sessions indicated that subjects read the query
aloud, processing it from left to right and evaluating clause by clause. Sometimes
the whole query was read first; at other times clauses were read and evaluated
immediately. The instance information against which the clauses were evaluated
was seldom read aloud.

An analysis of the error data from the verbal protocol (VP) blocks (Table IV)
showed that errors were quite high in the four query categories during the first
VP block, especially for the complex queries (AND/OR). Average error rate for
the first block was 12.3% (n=480), but it reached as high as 22.9% for complex
queries with two NOTSs. The overall rate dropped to 4.4% in the second verbal
protocol block.

Table IV Error data (%) from the verbal protocols of the first and
second block for the four ?uery and the three NOT categories as
percentages of the number of observations in the categories (n).

Query categories

Single Double Mixed Mixed() Mean(n)

Block
1 2 (n) 1 2 (n) 1 2 (n) 1 2 (n) 1 2 (n)

0-NOT 42 00 (24) 83 00 (24) 208 83 (24) 83 00 (24) 104 21 (96)
I-NOT 00 42 (48) 56 42 (72) 125 42 (48) 125 42 (48) 74 4.2 (216)
2-NOT 42 00 (29) 229 63 (48) 208 83 (48) 229 63 (48) 19.6 59 (168)

Mean 21 21 (9) 118 42 (144) 175 67 (120) 158 42 (120) 123 4.4 (480)

3.3.1 Processing errors

To permit a more detailed analysis, the protocols were coded in terms of
processing errors and were examined for specific user strategies. Two levels of
query processing had been identified in a previous pilot study: the processing of
the clauses and the processing of the logical operators using the results of the
clauses as input. The following seven categories of processing errors, distributed
over the two levels, were observed. They ranged from misreading clauses to
incorrectly interpreting the logical structure of the query.

Mistakes concerning the value (truth or falseness) of a clause can be caused by
errors in reading the clause, or errors in evaluating the clause (i.e., comparing
the clause with the related instance information, sometimes in combination with
a NOT). The following four categories contained these cases.

19

1 Reading a clause incorrectly. Comparators (=, <, >, <>) were often misread.
For example, subjects read "smaller than", instead of "greater than"; or "is
equal to" instead of "is unequal to". Also, numerals (e.g. 1963) were misread,
especially the numerical values that were used in clauses with "year" and
"rating". These misreadings did not always result in an incorrect assessment of
the clause. Only those misreadings that did were counted.

2 Missing a NOT while reading. A NOT operator standing before a clause was
sometimes missed in the subject’s reading of the clause and was therefore not
incorporated in further evaluation, resulting in an incorrect assessment of the
value of the clause.

3 Incorrect evaluation of a clause. The clause had to be compared to the infor-
mation given in the LP-instance. Even though a clause was correctly read,
subjects could come to an incorrect conclusion about the truth or falseness of
the clause after this comparison.

4 Incorrect evaluation of a NOT clause. Wrongly evaluated clauses that were
combined with a NOT operator were scored separately in this group.

On the query level, the processing of the logical operators and the combining of

the results of the clause assessment are the key activities. The verbal protocols

enabled us to keep track of the locus of attention of the subjects while they were

processing a query. Errors found at this level are the incorrect omission of a

clause and incorrect conclusions about the value of the query.

5 Incorrectly omitting a clause. Sometimes subjects skipped the evaluation of a
relevant clause; this was scored as an omission.

6 Incorrect evaluation of the query. In some cases queries whose clauses had
been correctly read and evaluated were still processed incorrectly, resulting in
an incorrect response. This category contains those errors that could not be
assigned to any other.

7 Redundant evaluation of a clause. Most of the time subjects correctly bypassed
evaluation of the clauses that were redundant in a query. However, sometimes
they did process a redundant clause. Processing of these clauses did not
change the logical sense of the query. For example, if the first clause of the
query A OR B OR C is found to be TRUE, evaluation of the two other
clauses is redundant. This category is not associated with errors in response,
and so should be considered separately from the preceding six.

The verbal protocols from the first and last sessions of the experiment were
coded using these error categories. For each subject, two analyses were per-
formed: an analysis of the incorrect trials in terms of the processing errors (error
categories 1-6); and an analysis of the processing of queries with redundant
clauses in the query (error category 7). As a general rule, errors observed in
processing were assigned to a category only if the error led to an incorrect
evaluation of the query against the instance (except for the redundant clauses,
category 7). Table V gives the distribution of errors relative to the total number
of trials-with-errors for the two verbal protocol blocks. Some incorrect trials
contained more than one error count (in the same or different categories). If

|

there was more than one error in the same category in a query evaluation, this
was scored as a single error. Thus, the percentages do not sum to a 100. In block
one there were 59 (12.3%) incorrectly assessed queries, and in block two there
were 21 (4.4%). There were 16 queries containing redundant clauses.

Table V Processing errors in the verbal protocols for the two blocks
in percentage of the total number of trials-with-errors (categories 1-6)
or of the number of redundant clause queries (category 7).

Error categories Block 1 Block 2
(n=59) (n=21)
1 Reading a clause incorrectly 0.0% 14.3%
2 Missing a NOT while reading 49.2% 42.9%
3 Incorrect evaluation of clause 22.0% 4.8%
4 Incorrect evaluation of NOT clause 39.0% 33.3%
5 Incorrectly omitting a clause 322% 42.9%
6 Incorrect evaluation of the query 6.8% 4.8%
(n=192) (n=192)
7 Redundant evaluation of a clause 27.6% 7.8%

The data show that the percentage of errors related to a NOT is relatively high
and did not decrease in the second block. The errors related to the redundant
evaluation of clauses decreased in the second block. On the other hand, errors
associated with incorrectly omitting a clause did not decrease.

Two further details of the processing errors are worth noting. The first concerns
the effect of brackets on the processing of clauses. The presence of brackets in a
query implies that the clauses within the brackets are to be grouped. Two
processing errors are related to this at the query level: the omitting of a clause
and the redundant evaluation of a clause (categories S and 7). The data show
that only the omitting error is affected by the use of brackets; the error rate was
18.3% and 4.2% for mixed and mixed() query category respectively (n=120).
This effect was not found for the redundant processing, the means being 23.3%
and 25.8% for mixed and mixed() respectively (n=120).

The second point concerns the interaction of NOT with the clause comparator.
In the processing of a NOT clause either the comparator (=,<>,<,>) has to be
converted to its opposite sense before clause evaluation; or else the value (true
or false) of the clause is converted after clause evaluation. The protocols
indicate that, in general, the subjects convert the comparator. Conversion of "="
is simpler than conversion of "<" or ">", A common error was the conversion of
"smaller than" to "greater than” instead of to “greater than or equal”. The number
of errors was 11.7 % (n=240) and 4.5% (n=576) for, respectively, "NOT <" or

e - — i ——

21

"NOT >" and "NOT =". Logically equivalent notations "NOT=" and "<>"
differed in number of errors, respectively, 4.5% (n=576) versus 1.3% (n=312).

3.3.2 User strategies

In general subjects processed the queries from left to right even when brackets
were present in the query. Only 1.7% (n=720) of the queries were approached
in a different order. Typically, protocols revealed the sequence of clause evalu-
ation, but did not reveal directly the understanding of the logic in the query.
They had the form "evaluate A, evaluate B, (evaluate C), state conclusion”.
There are some protocols, however, that show in detail the mechanisms of the
logical operators. Table VI shows samples of two protocols.

Table VI A sample stimulus with a typical protocol (A) and a proto-
col that reveals the mechanisms of the logical operators (B).

not year = 1979 and (genre=jazz or artist <> Jody Sylvian)
Will Bazar classical 1965 1

(A) "not year is 1979... correct... and the genre is jazz... not correct artist is
not JS, that one is correct..."
(subject mq, 2nd block, answer is correct)

(B) "in this case we begin with an ’and’ and then an OR between
brackets.. the year must not be 1979 ...that is satisfied because it is
1965.. look to the other side of the 'and’... we can choose.. either the
genre has to be jazz... its not... or the artist has to be unequal to JS
but that is true, thus both sides of the ’and’ are satisfied by the
conditions and the answer should be yes".

(subject ea, 2nd block, answer is correct)

The verbal protocol A shows a fairly short protocol in which almost no refer-
ences are made to logical operators or the organisation of the processing. In
verbal protocol B explicit reference was made to the mechanisms of the oper-
ators and the organisation of the query. The protocol type A was the typical
protocol.

In summary, the verbal protocols showed that, in general, queries were processed
from left to right. Brackets did not change the order of processing. A large
proportion of the errors were due to reading errors, most notably in relation to
NOT clauses. Also the flipping of the greater or smaller than sign was a major
source of errors. The unequal comparator ("< >") caused less problems that the
logical equivalent "NOT=". The total number of errors in the second verbal
protocol block was less than half that in the first block.

22

4 DISCUSSION

The latency and error data converge to show that subjects have increasing
difficulty with longer, more complex queries: queries involving mixed (AND OR)
and NOT operators were the most difficult to interpret. The inclusion of
brackets in the query had a strong effect on latencies and errors. An increase in
the number of logical operators from one to two had no effect on the number of
errors. No differences between simple processing of AND and OR were found,
in contrast with the experimental findings of Greene et al. (1990).

To interpret these findings we consider first the verbal protocol data and then
develop a model aimed at identifying latency and error components in the query
processing.

The verbal protocols gave insight into certain aspects of the query processing.
Most importantly, they revealed how the subjects organised their analysis of the
query. The verbal protocols showed that queries were always processed from left
to right, including those cases in which it would have been more efficient to start
at the end of the query. For instance, the query

A ANDBORC
can be analysed by identifying the part of the query that has the greatest impact
on the truthness or falseness of the whole query. Here, an efficient strategy
would be to evaluate C first, because if C is true then the whole query is true
and the answer for the query can immediately be given. This hierarchical
approach was, however, not used by the subjects.

A model of query processing can be formulated in which the basic processes are
reading the elements of the query (the clauses and the logical operators);
comparing clauses against the instance; storing the resulting values of the clauses;
and activating the rule of the logical operator by retrieving it from memory and
storing for immediate use. In addition to making provision for application of the
logical operator to the truthness or falseness of the combined clauses, the model
must also dictate the flow of processing. For instance, in A AND 2 OR C, clause
B can be skipped if A is false. Thus, two other processes are: deciding how to go
on and computing the value of the logical combination of the clause values.

In Fig. 3 this model of query processing is presented for a three clause query.
The flow is from left to right. The first step is the processing of clause A,
comprised of the basic processes of read and compare against the instance. The
resulting TRUE/FALSE value of clause A is passed on to the decide block,
which also requires the rule for the logical operator following the clause. The
rule is obtained from the block below, activate log.op. The decision on how to
continue depends on the combination of logical rule and value of clause A. For
instance, if the clause is true and the logical operator is AND, then clause B
must be processed; if the clause is false, B can be skipped.

23
read & | pass
compare A TF —’\
decide on
activate | _pass_| f&?;',”;ag;on compute T/F %J_ans
log. op. rule ‘skip B —» {rule*T/F's) /
‘process BW
decide on
activate | pass continuation
a «T
read & l_cass log. op. [rule] frule T compute T.F
9 skep C—»
compare B { rule :process C‘-‘ {rule*T.F's
read & | pass
compare C| T/F

answer

Fig. 3 Model of query processing of a three clause query. (A, B, C:
the clauses; log.op.: logical operator; T/F: true/false).

In either case, compute produces a temporary value based on the combination of
logical rule and values passed from processing of clause A and B (if done). If B
is skipped, then the value of clause A alone is passed as the value of the query
so far. At this stage, the next logical operator must be activated to decide how to
continue. Here the same thing happens as at the former decision point. If clause
C can be skipped, compute returns the value of the query based on clauses A
and B and the answer can be given.

Given that the processing is from left to right, it is possible to specify which
elements in the query must be successively processed to arrive at a conclusion on
the query. In Table VII, these clauses and operators are specified from left to
right for all the possible TRUE/FALSE combinations. Note that no precedence
rules were used in this experiment. We assumed that subjects with no program-
ming knowledge or specific training on logic would also lack knowledge of
specific rules. The precedence rules would add an additional degree of complex-
ity to the query processing. In fact, only the query A OR B AND C with clause
A being TRUE might have been problematic, because, using the precedence
rule, it has to be processed differently.

24

Table VII The clauses (A, B, C) that have to be processed to deter-
mine the value of the query for the different values of the clauses
(T=true, F=false) given a left to right processing of the query. The
logical operator to be processed is indicated by 2. (NB, no precedence
rules were used in the experiment).

Query categories

Double Mixed Mixed() '
AND AND OR OR AND OR OR AND AND (OR) OR (AND)
Clause
A B C A B C A B C A B C A B C A B C
T T*T/F F® F¢T/F T® F*T/F F® T°T/F T¢ F°T/F F° T? T/F
T F¢ Fe Te Te Te F¢ F¢ Te Te Fe Fv
F&‘ Q TQ Q FQ Q T/F TQ Q T/F FQ TQ

From Table VII it can be seen that with some combinations of logical operators
and TRUE/FALSE values in the mixed category, more clauses need to be
processed than in the other categories. In most cases, both logical operators have
to be processed to arrive at a conclusion about the value of the query. In some
cases in the mixed() condition, however, the value of the query can be computed
after processing only the first operator.

From the processing specifications in Table VII it can be concluded that the
average amount of processing will be different for the different query categories.
Now, if we assume that the two main processing components are the processing
of clauses and the logical analysis (activate, decide, compute) and that these two
components cost the same amount of time, we can use the number of processing
components as a rough estimate of the latencies. Totalling the processes, the
ratio of amount of processing in the three conditions is, on average,
1: 108 : 0.92 for double : mixed : mixed(). Other time aspects, like e.g. start and
answer, are considered to be negligibly small compared to the two major time
components. Thus, on the basis of the model and processing characteristics, the
latencies in the mixed and mixed() categories can be predicted using the double
category as norm. The predicted and the observed latencies are presented in
Table VIII. Each level of NOT was considered as a separate case, because we
do not see yet how that factor can be incorporated in the model. The predictions
were confined to queries with equal number of operators (three). Extrapolation
to the single operator queries showed underestimation of processing time.

25

Table VIII Predicted and (between brackets) observed average
response latencies (s) with the Double data as basis.

Query categories

Double Mixed Mixed()
0-NOT (83 8.9 (8.9) 7.6 (8.3)
1-NOT (9.4 102 510.3; 8.6 §3.9)
2-NOT (9.9 10.7 (10.7 9.1 (9.1

This analysis shows that the effect of brackets is to reduce the amount of
processing needed in the mixed() category, since processing of the second
operator can sometimes be omitted. It is not clear precisely what further effect
the brackets might have on processing; further experiments investigating this
aspect should control for the number of clauses processed in the bracket and
non-bracket cases.

These comparisons show that latencies can be predicted with some accuracy. The
intention in using this model is to show that one way to explain the latency
results is on the basis of the number of processing components in the query.
Further research is needed to investigate the assumption that the time for the
different processes are equal.

How can the model help to interpret the error data? From the protocol data we
saw that the number of reading errors was relatively high in proportion to other
errors. Reading errors occur during the processing of the clauses, in particular in
combination with the NOT operator. Following the same line of reasoning as
with the latency data, the number of clauses to be processed (from Table VII)
could be used to predict the error data in the speed trials. The ratio of the
number of clauses processed in the three conditions is thus computed as
1:133: 1. However, the error rate predicted using these assumptions differs
from the observed data. The fact that the double and single conditions did not
differ in number of errors (despite a two-fold difference in number of clauses
processed) also argues against using amount of processing as a basis for error
prediction (see Fig. 2). A significant difference between double and mixed
queries lies in the fact that the same logical rule is invoked in the double case
whereas two different rules are invoked in the mixed case. Interference between
the two different rules might explain the rise of errors in the mixed condition.
The brackets in mixed() might have helped the subject to mentally segregate the
processing of the two operators, resulting in a large reduction of errors. It is
unclear which factor plays a role in the interpretation of queries containing
brackets.

26

A somewhat surprising result concerned differences between university and high
school students. Subjects were selected as having no specific logical training or
programming experience. No a priori differences were expected between the
university and high school students. Indeed, both groups started off at the same
processing speed and did not differ in the error data. Both groups improved
performance in term of errors. However, the university students became relative-
ly faster in the successive blocks. In terms of speed-accuracy tradeoff their
performance became more efficient than that of the high school students. Both
groups learned during the experiment although there was no feedback given
during the experiment.

A remark is necessary concerning the methodology. The combination of latency
and error measurement and verbal protocols was a good methodology for
addressing the problem of the interpretation logical operators. The protocols
gave insight into details of the query processing. However, the application of the
logical rules was not explicitly referred to in the protocols. One plausible
explanation for this is that the problem the subjects had to solve did not evoke
deliberate problem solving, because the rules were too simple and were there-
fore processed quickly. When processes are fast, fewer verbal references are
made to those processes (Ericsson & Simon, 1984).

Most studies have addressed query production, i.e. the creation of a query. In
our study we studied a process that is assumed to be part of query production,
namely, query interpretation. The reason for selection of this strategy was that
the understanding of logical operators should be separated from other factors in
querying production, like knowledge of the dataset or understanding of the data
model. We regard query interpretation as a prerequisite for query production.
Understanding logical operators is necessary for the active use of them. The
difference between these two task situations is indicative of the extra processes
that apply in query formulation investigated in other studies. Our results indicate
that people can successfully interpret logical operators. However, the subjects did
not make use of efficient strategies to solve the problems. The number of errors
was low in this task situation compared to the results from studies in query
generation. (Greene et al (1990) reported an error rate of 47.5 % in the gener-
ation of SQL-type of queries with AND OR operators.) In this study we have
used relative simple problems. More complex problems could force people to
explicitly organise the processing of the query. Further studies on logical
operators should address that organisation process and the question of how to
support it.

27

REFERENCES

Borgman, C.L. (1986). The user’s mental model of an information retrieval
system: an experiment on a prototype online catalog. International Journal of
Man-Machine Studies 24, 47-64.

Broadbent, D.E. & Broadbent, M.H.P. (1978). The allocation of descriptor terms
by individuals in a simulated retrieval system. Ergonomics 21(5), 343-354.

Brosey, M. & Shneiderman, B. (1978). Two experimental comparisons of
relational and hierarchical database models. International Journal of
Man-Machine Studies 10, 625-637.

Chamberlin, D.D., Astrahan, M.M., Eswaran, K.P, Griffiths, PP, Lorie, R.A,,
Mehl, J.W., Reisner, P. & Wade, B.W. (1976). SEQUEL 2: A unified
approach to data definition, manipulation and control. IBM Journal of
Research and Development 20, 560-575.

Cooper, W. (1988). Getting beyond Boole. Information Processing & Manage-
ment 24(3), 243-248.

Ericsson, K.A. & Simon, H.A. (1984). Protocol Analysis: Verbal Reports as
Data. Cambridge, MA: MIT Press.

Greene, S.L., Devlin, S.J., Cannata, PE. & Gomez, L.M. (1990). No IFs, ANDs,
or ORs: A study of database querying. International Journal of Man-Machine
Studies 32, 303-326.

Jarke, M. & Vassiliou, Y. (1985). A framework for choosing a database query
language. Computing Surveys 17(3), 313-340.

Katzeff, C. (1986). Dealing with a database query language in a new situation.
International Journal of Man-Machine Studies 25, 1-17.

Lochovsky, F.H. & Tsichritzis, D.C. (1977). User performance considerations in
DBMS selection. Proceedings of ACM SIGMOD (pp. 124-134). New York:
Association for Computing Machinery.

Marchionini, G. (1989). Making the transition from print to electronic
encyclopaedias: adaptation of mental models. International Journal of
Man-Machine Studies 30, 591-618.

Michard, A. (1982). Graphical presentation of boolean expressions in a database
query language: design notes and an ergonomic evaluation. Behaviour and
Information Technology 1(3), 279-288.

Ogden, W. & Kaplan, C. (1986). The use of "and" and "or" in a natural language
computer interface. Proceedings of the Human Factors Society 30th Annual
Meeting (pp. 829-833). Santa Monica, CA: Human Factors Society.

Reisner, P., Boyce, R.F. & Chamberlin, D.D. (1975). Human factors evaluation
of two data base query languages - Square and Sequel. Proceedings of the
National Computer Conference (pp. 447-452). Arlington: AFIPS Press.

Reisner, P. (1977). Use of psychological experimentation as an aid to develop-
ment of a query language. IEEE Transactions on Software Engineering
SE-3(3), 218-229.

Thomas, J.C. & Gould, J.D. (1975). A psychological study of query by example.
Proceedings of the National Computer Conference (pp. 449-445). Arlington:
AFIPS Press.

Thompson, R.H. & Croft, W.B. (1989). Support for browsing in an intelligent
text retrieval system. International Journal of Man-Machine Studies 30,
639-668.

Vassiliou, Y. & Jarke, M. (1984). Query languages - A taxonomy. In Y. Vassiliou
(Ed.), Human Factors and Interactive Computer Systems (pp. 47-82).
Norwood, NJ: Ablex.

Wason, P.C. & Johnson-Laird, P.N. (1972). Psychology of Reasoning: Structure
and Content. Cambridge, MA: Harvard University Press.

Welty, C. (1985). Correcting user errors in SQL. International Journal of
Man-Machine Studies 22, 463-477.

Soesterberg, March 22, 1991
‘/?:-\’3 o T T L

DL:/P.J.M.D. Essens

29

APPENDIX Queries in the verbal protocol blocks (the first block equals the
second block).

Query categories

Single Double
0O-NOT = and > = and > and =
<> or <> = 0or = or <
1-NOT not = and > aot < and = and =
= and not = <> and not < and =
not = or = = and <> and not =
< or not = not <> or = or =

= ornot < or <>
< Oor = Or not >

: 2-NOT not = and not = not = and not = and =
' not = or not = not = and <> and not >
not = or not > or =
= or not > or not <
Query categories
Mixed Mixed()
0-NOT = and <> or > = and (= or =)
> or = and > <> or (= and <>)
| 1-NOT not = and = or <> not = and (= or <>)
<> and not = or > < and (= or not =)
<> ornot = and = not > or (= and =)
= or <> and not > = or (= and not =)
2-NOT not = and not = or = not = and (not = or >)
= and not = or not = > and (not = or not =)

not > ornot = and <> not = or (not = and =)
not < or = and not > = or (not = and not =)

vt -

REPORT DOCUMENTATION PAGE ‘
1. DEFENCE REPORT NUMBER (MOD-NL) 2. RECIPIENT'S ACCESSION NUMBER 3. PERFORMING ORGANIZATION REPORT :
D 91-0043 Tg¢8§g91 B-2 i
4. PROJECT/TASK/WORK UNIT NO. 5. CONTRACT NUMBER 6. REPORT DATE
733.1 B91-34 March 22, 1991 g
7. NUMBER OF PAGES 8. NUMBER OF REFERENCES 9. TYPE OF REPORT AND DATES E
COVERED
29 20 Final i
10. TITLE AND SUBTITLE
An exploratory study of the interpretation of logical operators in database querying

11. AUTHOR(S)
P.J.M.D. Essens, C.A. McCann and M.A. Hartevelt
12 ERFGRMING ORGANIZATION NAME(S) AND ADDRESS(ES)
TNO Institute for Perception
Kampweg 5
3769 DE SOESTERBERG
13. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
TNO Defence Research
Schoemakerstraat 97
2628 VK Delft
14. SUPPLEMENTARY NOTES
15. ABSTRACT (MAXIMUM 200 WORDS, 1044 BYTE)
The use of logical operators in query languages is considered to be a major source of user problems in
database querying. The present study investigated whether people untrained in logic could successfully
interpret logical operators; and, how errors and latencies are related to the structure of the query. In an
experiment, the logical complexity of an SQL-style query formulation was varied in using AND, OR, and NOT
operators in either single or combined form. The latency and error data converged to show that subjects had
increasing difficulty with queries constructed with a combination of different operators. The inclusion of
brackets had a strong positive effect on task performance. Verbal protocols were used to identify sources of .
errors in query processing. A model of query processing was formulated and predictions latencies and errors
on the basis of processing components were tested.
|
|
}
|
|
16. DESCRIPTORS IDENTIFIERS
Human Factors Engineering Database Querying
Man-Machine Interactions Boolean Operators
Human Errors Query Complexity
Cognitive Skills
17a. SECURITY CLASSIFICATION 17b. SECURITY CLASSIFICATION 17c. SECURITY CLASSIFICATION
(OF REPORT) (OF PAGE) (OF ABSTRACT)
18. DISTRIBUTION/AVAILABILITY STATEMENT 17d. SECURITY CLASSIFICATION
L. . D OF TITLES)
Unlimited availability f

T ———— g -

3. {

4, 5.

6. {

7.8, 9.

10.

VERZENDLUST
Hoofddirecteur van TNO-Defensieonderzoek
Directie Wetenschappelijk Onderzoek en Ontwikkeling Defensie
Hoofd Wetenschappelijk Onderzoek KL
Plv. Hoofd Wetenschappelijk Onderzoek KL
Hoofd Wetenschappelijk Onderzoek KLu
Hoofd Wetenschappelijk Onderzoek KM
Plv. Hoofd Wetenschappelijk Onderzoek KM

Hoofd van het Wetensch. en Techn. Doc.- en Inform.
Centrum voor de Krijgsmacht

Dr. D.G. Pearce, Defence and Civil Institute of Environmental
Medicine, North York, Ontario, Canada

Extra exemplaren van dit rapport kunnen worden aan-
gevraagd door tussenkomst van de HWOs of de DWOO.

